
Who Are the Rational Actors in Software Development Projects?

Cornelia Gaebert1 and Jörg Friedrich2
1Research Group on Strategic Information Management, European Research Center for Information Systems

c/o University of Muenster, Leonardo Campus 11, D-48149, Muenster, Germany
2Kultur- und Sozialwissenschaften, Lehrgebiet Philosophie III, FernUniversität in Hagen, D-58084, Hagen, Germany

Keywords: Group Agents, Collective Actions, Rationality, Software Development Project, Software Development
Outsourcing, Software Project Management, Rational Actors.

Abstract: In the field of software development outsourcing and software project management, researchers use concepts
from economic theory to describe organizations, groups, teams, and involved people as rational actors.
However, they fail to justify these approaches based on an appropriate understanding of the involved social
actors’ status. The question, who really can be described as a rational actor, the organizations, teams, or the
individual people, and which kind of rationality they provide, remains open. We have therefore analyzed the
social structure of software development projects (SDP) as described in research literature. Based on novel
concepts from the field of social philosophy, we have developed a social ontology (SO) of the actors in the
context of commercial SDPs. We identified different actors at several levels, with different kinds of
rationality. Organizations, departments, and groups may act as rational actors if following well-defined
regulations and methods. Actor classification according to the rationality of the actors’ decision-making will
help understand and predict their behavior and thus provide a solid base for the application of economic
concepts to software development outsourcing and software project management research.

1 INTRODUCTION

During the last few decades, a lot of research
regarding software development outsourcing and
software project management has been using
economic theory approaches in order to understand
processes and actors’ behavior (cf. Benaroch et al.,
2003; Aubert et al., 2003; Beulen and Ribbers, 2003;
Lichtenstein, 2004; Gaebert, 2014a). The prerequisite
of this approach consists in depicting the actors as
rational agents. However, it remains unclear who
really is the actor: is it the individual person, the
group or the team, or the organization. It also remains
unanswered in which sense we can ascribe rationality
to these actors. There is a paucity of research about
why we are capable of describing individuals, groups,
or organizations as rational actors, and on the
preconditions of this description.

In this paper, we will analyze the social structures
existing in a software development project (SDP),
and in this way develop a social ontology (SO) of the
part of the world where the SDP is located. We will
use the notion of ontology as it is used in social
philosophy. As a philosophical discipline, it deals
with what the social world is composed of, and with

the basic matter and constitution of social reality
(Pratten, 2014). Do institutions, collectives the
entities constitute the world? Do they really exist in a
way, that we cannot reduce them completely to the
behavior of the individual people? The social
ontology as a philosophical discipline tries to answer
such questions.

We use the notion ontology not only for the
philosophical discipline reasoning about existence,
but also for the result (Lawson 2014). The system of
entities for which we are justified to say they exist, is
the ontology of (a part of) the social world. In this
sense, we will develop in this paper an ontology of
the actors in software development projects by
analyzing the rationality of these actors.

The aim of this paper is to contribute to clarifying
the social structure of SDPs in companies and other
organizations, who aim at developing software
systems supporting business process. Hence, it
introduces an ontological basis for research in
software development outsourcing and software
project management. We will answer the question,
under which conditions we are justified to describe an
organization or a group in a SDP as a rational actor.
From this, it is possible to answer the question if we

131Gaebert C. and Friedrich J..
Who Are the Rational Actors in Software Development Projects?.
DOI: 10.5220/0005516101310138
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 131-138
ISBN: 978-989-758-114-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

can apply economic theories based on the concept of
rational actors to problems in SDPs.

We will develop our argument in four steps. In
section 2, we will give a brief literature review of the
social structure of SDPs. Then, we will introduce
novel relevant approaches of social philosophy such
as intentional stance, collective rationality, and joint
action in section 3. In the fourth section, we will bring
both together and describe SDP actors in terms of
social philosophy. In the last section, we will
summarize the findings, and we will shortly discuss
open questions on SO philosophy. We claim that
researchers can better understand processes like
decision-making, software production, and
stakeholder involvement by using a clear social actor
ontology.

2 ACTORS IN SOFTWARE
DEVELOPMENT PROJECTS

If a company or an administrative authority meets a
new challenge in its business, it often needs a new
software system to support the changing or newly
implemented business processes. In many cases, it is
helpful to sign a contract with a software company
aiming to develop the needed system (Bakker et al.,
2011, Marschollek and Beck, 2012). Due to the quota
of failing SDPs (El Emam and Koru, 2008, Al-
Ahmad et al., 2009, Standish Group, 2010), many
researchers have been investing a high amount of
work over decades to find out the causes of project
problems and to develop problem-solving strategies
(cf. Dwivedi et al., 2013). These researchers describe
and analyze a couple of different actors, their
behavior, their interests, and decisions: the
contractual partners, the stakeholders, the groups and
teams within the SDP, and last but not least the people
who perform the tasks. It is obvious that the
ontological status and the kind of rationality of these
actors must be different.

In this section, we will analyze actor descriptions
in the research literature on software engineering
issues at different work levels.

2.1 Decisions and Structures inside the
Software Development
Organization

Yilmaz et al. (2010) analyze the structure of a
software development process as being divided into
activities and tasks assigned to organizations, teams,
or individuals. Their aim is to use economic

approaches like the prisoner’s dilemma from game
theory in order to understand decision-making in
SDPs. In an overview of relevant research literature,
it is shown that the prisoner’s dilemma can be used to
describe different interactions in SDPs, from
customer-supplier interactions in offshore SDPs and
interactions between the test team and the
development team to the cooperation of programmers
in extreme programming. If we take this point of
view, we can consider all actors as rational agents,
making their decisions by the use of well-defined
strategies aiming at their individual and independent
goal, i. e. to maximize their outcome. The authors
describe a software company as a social ecosystem
consisting of groups of individuals connected by
information-based interactions. In such ecosystems,
each participant has its individual strategies for
dividing its activities into tasks. Following this line of
reasoning, we can interpret the organization as a
hierarchical network of organizational units which
perform tasks or activities to reach specific goals. On
each level of the network’s hierarchy, the actors make
rational decisions to select a task or start an activity
in order to reach a defined goal.

Zannier’s and Maurer’s (2007) empirical research
shows a similar representation of the description of
decision-making. The authors study the agile and
non-agile processes of decision-making in software
development companies. The analyzed companies
have implemented well-defined rules for evaluating
alternatives and for making choices. The paper shows
that both in agile and in non-agile working companies
decision-making is due to well-established process
definitions. Again, we can see that the individual
programmer does not necessarily make decisions in
the strong sense, when the individual is just following
a predefined set of rules. There are, as the study
shows, individual decisions based on individual
experiences. In addition, there are decisions strongly
determined by company regulations. Therefore, these
are decisions using the organization’s rationality.

2.2 Collective Structures of Software
Engineering Processes

An SDP is embedded in a software engineering
environment which exists longer than the single
project and which involves more people than just the
project participants. Consequently, the SDP’s social
structure is connected and included in many ways in
a long-living and extended social structure. Tamburri
et al. (2012, 2013) investigated the social structure of
software engineering processes. They found four
types of collective structures: communities,

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

132

networks, teams, and groups. Regarding further
structure attributes, they discuss thirteen relevant
types of so-called organizational social structures
(OSS) (Tamburri et al., 2012).

Often, communities and networks are formed
without regard to a tangible SDP. Communities are
implemented for sharing, maybe of an interest, of
knowledge, or experiences. People building a
community wish to share knowledge or experiences,
because they have a common interest. This sharing
may help them do their work inside the SDP, but it
does not influence the decision-making directly
inside the SDP.

The purpose of a network is reaching other people
in a defined way, mostly for information exchange.
Networks are also independent from SDPs. They may
build the communication infrastructure for the SDP
participants. Consequently, they can make faster
decisions in SDPs, but at first glance, like
communities, they do not influence these decisions
directly.

Inside SDPs, we will find teams and groups.
Groups are stable parts of an organization, for
instance departments or long-term teams which are
well defined and structured by the organization’s
design principles. On the other side, teams are
constituted in order to solve a single task, or a limited
number of tasks. The project team is a team in the
sense of the OSS defined by Tamburri et al. (2012,
2013), but there are also teams inside the SDP, for
instance the team designing the system or the test
team.

If we use the four concepts for the description of
an OSS as suggested by Tamburri et al., we are able
to describe the whole complexity of social
dependencies between people working inside a SDP.
We will use the terminology of these researchers in
our following analysis of the SO of SDPs. This will
especially help to understand decision-making and,
therefore, the rationality of socially constituted
actors. We will pick up on this issue again in section
four.

2.3 Structures of the Cooperation
between Customer and Supplier

Whereas the studies mentioned above investigate the
processes within a software developing company,
Marschollek and Beck (2012) focus on problems
arising during customer-supplier cooperation. The
customer needs the software system, and the supplier
performs the SDP. The authors analyze how so-called
cultural differences between the parties lead to risks
and challenges in processing the SDP. As their

empirical investigation shows, public authorities, and
private enterprises implement extremely different
strategies for processing tasks and solving problems.
The organization’s culture (Kotter, 2008) determines
these strategies. Culture defines how participants
make their choices for actions. Therefore, from an
external point of view, the other organization appears
as the unknown, which is acting in a strange way.
Problems arise when customer people and supplier
people work together in teams for a certain period,
and when they have to decide together in these teams.

2.4 Summary: A Three-Level
Hierarchy of Actors

Summing up the results of the cited literature, we find
a hierarchy of different actors in the SDP. Each of
them seems to have a certain kind of rationality for
decision-making regarding the achievement of
specific goals (Table 1).

Table 1: Actor levels in software development projects.

Level Actors Examples

Contract level Organizations Supplier, customer

Project
management

level

Groups
Procurement department,

test department

Teams Project team, design team

Working level Individuals
Designer, user, architect,

developer

At the highest level, we find organizations. These
organizations make decisions in order to sign
contracts and to process the SDP’s business issues.
This decision-making process depends on rules
defined within the organizations and also on the
culture of each organization.

At the hierarchy’s intermediate level, we find
stable groups and short-term teams interacting for a
certain period inside the SDP. SDP planning and
management take place at this level. Therefore, this is
the project management level.

The stable groups consist mostly of individuals of
only one organization. These individuals also work
together outside the SDP, and often for a long time.
These groups also follow defined regulations or
cultural rules when it comes to organizing their work
and making their decisions. Nevertheless, there are
also teams consisting of individuals from several
organizations, i.e. teams that only exist for a shorter
period. They also have certain goals, for instance the
specification of requirements. In such teams, we will
seldom find an implementation of cultural rules, but

Who�Are�the�Rational�Actors�in�Software�Development�Projects?

133

there possibly are defined regulations for the
cooperation of the team members, determined in the
contract or by standardized process models.

Finally, at the lowest level, we find the individuals
who do their job. This is the working level. The
individuals make rational decisions, sometimes
comparatively free, and sometimes strongly ruled by
process definitions and regulations. They have beliefs
rooted in experience and individual knowledge and
use their means to reach desired ends.

These individuals are connected with others
inside and outside the SDP by networks. Since they
need information from other people when it comes to
making decisions, the implementation of such
networks will influence the process and the results of
decision-making.

Furthermore, the individuals are part of several
communities. These communities may influence the
individuals’ preferences and values. Therefore, also
community membership can be of significance for
decision-making inside the SDP.

Figure 1 shows our picture of the social structure
of an SDP’s environment. The blue circles symbolize
the individuals, and the lines connecting the
individuals symbolize the networks the individuals
are involved in.

To understand the social complexity of an SDP,
we must analyze how decision-making works at the
different levels of the described social structures. In
this context, it may be helpful to use the concepts of
philosophical SO, because these concepts provide a
systematic description of the rationality of social
actors. We will introduce these concepts in the next
section.

3 SOCIAL ACTORS AND THEIR
DECISION-MAKING

In this section, we will briefly provide the basic
concepts of SO needed for ascribing an independent
status of existence to the social entities described in
the previous section. Starting from there, we will
derive rationality criteria for these entities.

3.1 Intentional Stance

In descriptions like those depicted in the previous
section, we obviously take up the intentional stance
described by Dennett (1981). This means that we
attribute beliefs, desires and actions to an object, even
if it is not an individual person. Strictly speaking, we
do not say that these objects really do have beliefs and
desires. As Dennett stated, we make propositions
about the question concerning which beliefs the
object ought to have, and which desires it ought to
have, and whether it has some kind of rationality.

Tollefsen (2002) shows that we can take up the
intentional stance to describe and interpret
organizations. As this author states, if we ascribe
responsibilities to organizations like companies or
states, we must also accept that these objects are
intentional systems as defined by Dennett.

Tollefsen (2004) suggests to closely connect
intentionality with rationality. This means that the
intentional system has the ability to assess its beliefs
with regard to consistency and truth, and that it can
derive the right action from these beliefs in order to
reach the desired goals by making stable decisions.

Therefore, we can describe an intentional object
acting in such a way as a rational actor.

Figure 1: Collective actors in SDPs.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

134

3.2 Organizations as Rational Actors

As Tollefsen shows, in this sense organizations are
able - as organizations - to testify to propositions
because they can produce stable testimonials and
because other organizations and individual persons
accepted them as testifiers (Tollefsen, 2011). As
Tollefsen shows, organizations have the ability to
generate their own rationality through stable methods
and regulations for information processing regarding
goal definition, belief generation, and decision-
making.

If we consider the organization as a rational actor,
we suggest that there is a necessary precondition that
these methods and regulations be implemented as
institutions, according to the signification introduced
by Searle (see for instance Searle, 2006). As
suggested in section 2.3, we can call these accepted
methods and regulations the culture of the
organization.

3.3 Conditions of Joint Actions

Nevertheless, not every defined group of people and
not even every organization possess such an accepted
set of regulations and methods. Thus, there are
organizations that are not in a state of rationality (see
Gallotti, 2011). Therefore, we cannot attribute them
as rational actors (cf. Tollefsen, 2011). Nonetheless,
as shown by Pettit and Schweikard (2006), there are
other kinds of actions in groups without group
intentionality in a strong sense. These authors argue
that in the case of joint actions each individual person
belonging to the group must have a set of beliefs and
intentions.

We must ask how this complex set of beliefs and
intentions is possible. Pettit and Schweikard (2006)
suggest that we are capable of having the required
beliefs because we are social beings. In addition,
considering our natural and social history, we have
developed an ability to detect such possibilities for
joint action. We think this is not sufficient. After
having discussed some examples from everyday SDP
experience, we will discuss this issue shortly in the
last section of the paper.

4 COLLECTIVE RATIONALITY
IN SOFTWARE
DEVELOPMENT PROJECTS

We are now coming back to the organizations,
groups, teams, communities, networks, and

individual persons acting within the SDP as
announced in section 2 of this paper. We will analyze
below how to describe them as rational actors, in
particular by analyzing the rationality of their
decision-making.

4.1 Suppliers and Customers as
Rational Actors

First, it seems obvious that the customer and the
supplier, as with companies or public authorities, are
organizations in the sense defined by Tollefsen
(2002). They do not only act by delivering documents
like specifications, by signing contracts, producing
and delivering software, and finally by accepting the
product and paying the amount of money agreed. All
these actions can be interpreted as a testifying of
propositions. The customer, as an organization,
demands fulfillment of the requirements. The
supplier, as an organization, declares that he is able to
produce the needed system. In addition, it is the
supplier who demands fulfillment of the customer’s
obligations, and who declares the readiness of
delivery. Finally yet importantly, it is the customer
who accepts the delivered software system.

Furthermore, we find clear regulations on
decision-making in nearly all organizations.
Therefore, we can attribute rationality to them. We
find mechanisms to generate collective knowledge
and to testify propositions regarding the organization
itself or its business partners.

Nevertheless, we must be careful. Personal
relationships or individual power often bypasses and
avoids well-defined regulations in organizations (cf.
Narotzky, 2007, Edum-Fotwe and Price, 2009). In
this case, it gets harder to attribute rationality to the
organization and to describe it as a rational actor. In
order to be a rational actor, a true believer, it is not
only necessary to produce testimonials, but also to
produce them in a stable and understandable way.

Stable means that a proposition testified today as
true must be true tomorrow if the relevant
preconditions are unchanged. If a customer states
today that the requirements are completed, and if
tomorrow he delivers further requirements or major
change requests, we cannot attribute rationality to this
organization. We suggest to take into consideration
the following preconditions for ascribing rationality
to an organization. The organization has defined
regulations. In addition, by culture and tradition, or
by management authority and power, these
regulations are well implemented in the everyday
work of the organization.

Who�Are�the�Rational�Actors�in�Software�Development�Projects?

135

In other words, the other party does not need to
have knowledge of the regulations and processes
leading to a decision or a testimonial. The actor must
at least produce similar testimonials under similar
conditions. Knowing the conditions, another actor
can then generate a prediction. Should this prediction
fail repeatedly, it is difficult to ascribe rationality to
the actor who makes a decision or testifies a
proposition. Concerning the intentional stance
according to Dennett (1981), we can describe how the
actor ought to decide and what he ought to state if he
is rational. From this, we can derive predictions about
his rational behavior. This prediction can be derived
from previous observations. Nevertheless, we will
only be successful in our predictions if the actor acts
under similar circumstances and in a similar way.

Against this background, it is remarkable that an
SDP is an exception for many customers, whereas it
should naturally be the supplier’s daily business. In
exceptional business cases, of course, the
organization normally has no regulations
implemented as a culture. We must face the fact that,
in an SDP, a supplier will often be a rational agent,
whereas the customer’s maturity in decision-making
in SDP may be lower. This corresponds to the fact
that research literature in the field of project
management and decision-making in SDPs focuses
on the supplier’s side. The awareness for research
need is obviously higher than on the customer’s side.

Therefore, we are only justified in considering
SDP customers and SDP suppliers as rational actors
under the stated precondition of well implemented
relevant regulations on both sides. Only then, we will
be entitled to use rationality-based concepts from
economic theories and game theory for the
description and understanding of the project parties’
behavior.

4.2 Actors inside the SDP: Groups and
Joint Teams

Inside the SDP, there are a lot of comparatively stable
groups, but also temporary teams. We do not wish to
make detailed empirical claims about the structure of
these groups, but from the considerations of the
previous section we will derive some criteria of
attributing rationality and intentionality to these
groups.

Some parts of an organization are stable groups.
They act like organizations and have implemented
regulations by authority or by culture. Development
departments working according to quality standards
as CMMI or using agile methods (see Zannier and
Maurer, 2007) are rational actors as we see them. We

can also maybe consider the customer’s procurement
department as a rational actor, because it follows
documented regulations when selecting a supplier
and negotiating the contract.

Other SDP stakeholders lack the criteria of
intentionality and rationality in decision-making. If
we consider the customer’s business department in
need of the software system, we can expect it to have
implemented well-defined regulations in its everyday
business. Therefore, it works as a rational actor.
Nevertheless, it lacks those kind of regulations for
requirement definition regarding the needed software,
the testing of the delivered system and the testimonial
production for its final acceptance.

Inside the SDP, the parties will often establish
joint teams - some teams for project governance such
as project management boards, and others for the
processing of common tasks like specifying
requirement details or performing system tests. We
can hardly consider these teams as rational actors, but
sometimes we can say that they perform joint actions.
In SDP, we refer to this as collaboration.
Collaboration is not necessarily in agreement with the
rational goals of the organization (Axelrod, 1984;
Ketchley, 2014). It is possible, in joint action, to see
people from both parties agreeing to close testing
before having executed all test cases, or agreeing to
neglect security issues in the interest of saving time,
or agreeing in reaching an agreed due date.

4.3 Individuals as Actors inside the
Software Development Project

Finally, we have to consider the question if the
individuals can be described as rational actors when
working in an SDP. Since they are human beings,
they have of course beliefs and desires. Furthermore,
they have intentions and they will act accordingly.
However, from the project’s point of view, not all of
these beliefs and desires are relevant. Researchers
wish to describe the programmers, managers,
analysts, and users as rational actors, using economic
theories like game theory to understand their behavior
(as in Yilmaz et al. 2010, Yilmaz and O’Connor 2012,
Zannier and Maurer 2007). In this case, we must
answer the question whether the involved subjects
have desires and beliefs within the SDP context, and
if their decision-making is rational with respect to
these desires and beliefs. If they make their decisions
in order to reach goals outside the SDP and not
reducible to SDP relevant goals, or if they act strictly
according to regulations or instructions from an
authority, we are not justified in describing them as
rational actors inside the SDP.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

136

Table 2: Ontology of actors in software development projects.

Actor Rationality of decision-making How to understand the actor

Organizations and
stable groups

Defined by regulations implemented by
culture or authority

Understand the regulations, check the implementation
degree

(Project) Teams Mostly no rationality Understand the members, check potential joint actions

Individuals
Human rationality, if not strongly guided by
regulations of the organization

Understand individual beliefs and goals, check the
implementation degree of regulations, check
dependencies regarding communities and networks

Beside this, the behavior of individuals will
influence the rationality of organizations and groups.
The collective rationality of these actors depends on
the rule-following of the involved individual people.
Only if they follow the rules, based on authority and
power of the organizations’ managerial staff, or based
on a well-implemented organizational culture, the
organization will act rational. Since the individuals
are not just embedded in one organization, conflicting
demands from different rules may influence their
behavior.

Furthermore, people may be part of one or more
communities, having implemented their own culture.
The culture of a community may determine the
behavior of the individual also inside the SDP and can
disturb the rationality of the groups and
organizations.

Finally yet importantly, it is necessary to analyze
the influence of implemented networks on the
behavior of individuals. Networks may support the
organization’s defined norms and regulations, but
they may also allow them to bypass the regulations.
Networks then also disturb the organization’s
rationality.

5 CONCLUSIONS

In this paper, we introduced a social ontology in order
to clearly differentiate between kinds of collective
rationality as a basis of decisions, beliefs, and actions
in the context of SDPs. We are thus contributing to
clarify the social structure of SDPs. This will be a
solid foundation for the application of economic
concepts using the notion of rational actors to
software development outsourcing and software
project management research.

We have found three kinds of social actors inside
the SDP. Table 2 sums up this classification.

First, there are organizations acting according to
regulations well implemented by culture or authority.
The involved companies may act as organizations of
this kind, but also company departments or other

stable, long-existing groups. We can ascribe
rationality in decision-making to these organizations
due to the understandable regulations they have
implemented. Other actors can understand and predict
these actors’ behavior through the understanding of
their goals and regulations if the implementation
degree is at least observable from outside the
organization.

Secondly, there are teams who just exist for a
short time during the project. These teams often have
no well-implemented regulations, and, therefore, we
cannot ascribe rationality to these teams, although
they may have goals and make decisions. It is difficult
to understand and predict these teams, but we can use
the concept of joint action in order to derive collective
behavior predictions from the understanding of the
members’ individual beliefs and goals.

Finally, there are individuals. If they act according
to their own beliefs and goals without a strong
binding to regulations of the organization they belong
to, we can ascribe a real human kind of rationality to
them. We may understand and predict their behavior
by using our own rationality. On the other hand, if
they only act according to the organization culture or
to authority instructions, they have no own rationality
inside the SDP.

Based on an analysis of decision-making of
collective and individual actors, it shall be possible to
classify them as rational actors. This will be helpful
to understand the stability of software requirements,
conflicts between contractors, the dynamics of system
usage, and software systems acceptance.

REFERENCES

Al-Ahmad, W., Al-Fagih, K., Khanfar, K., Alsamara, K.,
Abuleil, S., Abu-Salem, H. 2009. A Taxonomy of an IT
Project Failure: Root Causes. International
Management Review 5(1), 93-104.

Aubert, B.A., Patry, M. and Rivard, S. 2003. A tale of two
outsourcing contracts. An agency-theoretical
perspective. Wirtschaftsinformatik 45, 181-190.

Who�Are�the�Rational�Actors�in�Software�Development�Projects?

137

Axelrod, R. 1984. The Evolution of Cooperation. New
York, Basic Books.

Bakker, R. M., Knoben, J., De Vries, N., Oerlemans, L. A.
2011. The nature and prevalence of inter-
organizational project ventures: Evidence from a large
scale field study in the Nether-lands 2006–2009.
International Journal of Project Management 29(6),
781-794.

Benaroch, M., Lichtenstein, Y., Wyss, S. 2012. Contract
Design Choices in IT Outsourcing: New Lessons from
Software Development Outsourcing Contracts (April
20, 2012). Available at SSRN:
http://ssrn.com/abstract=2137174 or
http://dx.doi.org/10.2139/ssrn.2137174.

Beulen, E. and Ribbers, P. 2003. IT Outsourcing Contracts:
Practical Implications of the Incomplete Contract
Theory. Proceedings of the 36th HICSS.

Dennett, D. C. 1981. True believers: The intentional
strategy and why it works. In: Scientific Explanation.
Ed. by Heath, A., Oxford University Press. 53-75.

Dwivedi, Y.K., Ravichandran, K., Williams, M.D., Miller,
S., Lal,B., Antony, V., Muktha, K. 2013. IS/IT Project
Failures: A Review of the Extant Literature for
Deriving a Taxonomy of Failure Factors. IFIP
Advances in Information and Communication
Technology (402), 73-88.

Edum-Fotwe, F. T., Price, A. D. 2009. A social ontology for
appraising sustainability of construction projects and
developments. International Journal of Project
Management, 27(4), 313-322.

El Emam, K., Koru, A. G. 2008. A Replicated Survey of IT
Software Project Failures. IEEE Software 25(5), pp.
84-90.

Gaebert, C. 2014a. Contract Design and Uncertainty in
Software Development Projects. Perspectives in
Business Informatics Research. 217-230.

Gaebert, C.2014b. Dilemma Structures between
Contracting Parties in Software Development Projects.
Proceedings of the 9th International Conference on
Software Engineering and Applications – 29-31 August
2014, SCITEPRESS – Science and Technology
Publications, 539--548.

Gallotti, M. L., Pleasants, N., Griffiths, P. 2011. Naturally
We. A Philosophical Study of Collective Intentionality
http://hdl.handle.net/10036/2997.

Ketchley, N. 2014. “The army and the people are one
hand!” Fraternization and the 25th January Egyptian
Revolution. Comparative Studies in Society and
History, 56(01), 155-186.

Kotter, J. P. (2008). Corporate culture and performance.
Simon and Schuster.

Lawson, T. 2014. A conception of social ontology. In
Pratten, S. (Ed.): Social Ontology and Modern
Economics, 19-52.

Marschollek, D. K. F. O., Beck, R. 2012. Alignment of
Divergent Organizational Cultures in IT Public-Private
Partnerships. Business & Information Systems
Engineering, 4(3), 153-162.

Narotzky, S. 2007. The Project in the Model. Current
Anthropology, 48(3), 403-424.

Pettit, P., Schweikard, D. 2006. Joint actions and group
agents. Philosophy of the Social Sciences, 36(1), 18-39.

Pratten, S. 2014. Introduction. In Pratten, S. (Ed.): Social
Ontology and Modern Economics, 1-16.

Pratten, S. 2013. Post-Keynesian Economics, Critical
Realism, and Social Ontology. The Oxford Handbook
of Post-Keynesian Economics, Volume 2: Critiques and
Methodology, 2, 62-739.

Searle, J. R. 2006. Social ontology. Some basic principles.
Anthropological Theory, 6(1), 12-29.

Standish Group 2010. CHAOS MANIFESTO, The Laws of
Chaos and the CHAOS 100 Best PM Practices The
Standish Group International.

Tamburri, D. A., Lago, P., van Vliet, H.. 2012.
Organizational social structures for software
engineering. ACM Comput. Surv. 46(1), 1-34.

Tamburri, D. A., Lago, P., van Vliet, H., 2013 Uncovering
Latent Social Communities in Software Development.
IEEE Software, 30(1), 29-36.

Tollefsen, D. 2002. Organizations as true believers. Journal
of social philosophy, 33(3), 395-410.

Tollefsen, D. 2004. Collective epistemic agency. Southwest
Philosophy Review, 20(1), 55-66.

Tollefsen, D. 2011. Groups as Rational Sources. Collective
Epistemology, 20, 11-22.

Yilmaz, M., O’Connor, R. V., Collins, J. 2010. Improving
software development process through economic
mechanism design. In: Systems, Software and Services
Process Improve-ment. Ed. by Riel, A., O’Connor, R.,
Tichkiewitch, S., Messnarz, R., Berlin Heidelberg:
Springer. 177-188.

Yilmaz, M., O’Connor, R. V. 2012. A market based
approach for resolving resource constrained task
allocation problems in a software development process.
In: Systems, Software and Services Process
Improvement. Ed. by Riel, A., O’Connor, R.,
Tichkiewitch, S., Messnarz, R., Berlin Heidelberg:
Springer. 25-36.

Zannier, C., Maurer, F. 2007: Comparing decision making
in agile and non-agile software organizations. In: Agile
Processes in Software Engineering and Extreme
Programming. Ed. by Abrahamsson, P., Marchesi, M.,
Maurer, F., Berlin Heidelberg: Springer. 1-8.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

138

